BloodPressureHeartMeds.Net

Study traces precursor of deadly esophageal cancers to leftover embryonic cells

May 01, 2017

The researchers also generated mouse models in which the esophageal tissue could be damaged at precise times, revealing that this damage triggers a rapid mobilization of embryonic cells that would otherwise be resting. Those cells take up the newly freed space in a process that might mimic the evolution of Barrett's. Again, the speed with which those cells were activated seemed to rule out mutations as an explanation in favor of competition between normal cells and the minority embryonic population.

"The dim prognosis for esophageal adenocarcinoma has driven therapeutic strategies aimed at destroying Barrett's esophagus, including Radio Frequency Ablation (RFA), before it progresses to aggressive cancer," McKeon said. "While RFA appears to be exceedingly effective in the short term, there are hints that Barrett's might be fairly resilient and poised for recurrence."

The new findings suggest it may be more effective to go after the precursor cells instead. To do that, Xian says they "will have to clone the stem cell for Barrett's and the Barrett's precursor cell in the junction to find the targets needed to eradicate them."

In a final note, McKeon and Xian say that they suspect an additional subset of cancers, especially those linked to inflammation and tissue damage, might arise from precursors derived in a manner similar to Barrett's. "If so, we anticipate rapid progress into a group of particularly aggressive cancers that typically outwit the best treatments we have."

Source: Cell Press